Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes.

نویسندگان

  • Risa Haigou
  • Mitsuo Miyazawa
چکیده

We examined the in vitro metabolism of (+)-terpinen-4-ol by human liver microsomes and recombinant enzymes. The biotransformation of (+)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Terpinen-4-ol was found to be oxidized to (+)-(1R,2S,4S)-1,2-epoxy-p-menthan-4-ol, (+)-(1S,2R,4S)-1,2-epoxy-p-menthan-4-ol, and (4S)-p-menth-1-en-4,8-diol by human liver microsomal P450 enzymes. The identities of (+)-terpinen-4-ol metabolites were determined through the relative abundance of mass fragments and retention times on GC-MS. Of 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6, and CYP3A4 were found to catalyze the oxidation of (+)-terpinen-4-ol. Based on several lines of evidence, CYP2A6 and CYP3A4 were determined to be major enzymes involved in the oxidation of (+)-terpinen-4-ol by human liver microsomes. First, of the 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6 and CYP3A4 catalyzed oxidation of (+)-terpinen-4-ol. Second, oxidation of (+)-terpinen-4-ol was inhibited by (+)-menthofuran and ketoconazole, inhibitors known to be specific for these enzymes. Finally, there was a good correlation between CYP2A6 and CYP3A4 activities and (+)-terpinen-4-ol oxidation activities in the 10 human liver microsomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of ∆-Carene by Human Cytochrome P450 Enzymes: Identification and Characterization of Two New Metabolites

The metabolism of the bicyclic monoterpene ∆-carene was investigated in vitro using human liver microsomes as well as human smoker/non-smoker lung microsomes and 12 different recombinant cytochrome P450 enzymes coexpressed with human CYP-reductase in Escherichia coli cells. We detected two metabolites using GC-MS analysis. The mass fragmentation indicated for one metabolite hydroxylation in the...

متن کامل

In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes.

A systematic in vitro study was carried out to elucidate the enzymes responsible for the metabolism of haloperidol (HAL) using human liver microsomes and recombinant human cytochrome P450 isoenzymes. In the first series of experiments, recombinant cytochrome P450 (P450) isoenzymes were used to evaluate their catalytic involvement in the metabolic pathways of HAL. Recombinant CYP3A4, CYP3A5, and...

متن کامل

Phosphonate O-deethylation of [4-(4-bromo-2-cyano-phenylcarbamoyl) benzyl]-phosphonic acid diethyl ester, a lipoprotein lipase-promoting agent, catalyzed by cytochrome P450 2C8 and 3A4 in human liver microsomes.

NO-1886 ([4-(4-bromo-2-cyano-phenylcarbamoyl) benzyl]-phosphonic acid diethyl ester) increases lipoprotein lipase activity, resulting in a reduction in plasma triglycerides and an increase in high-density lipoprotein cholesterol. The metabolism of NO-1886 in human liver was investigated in the present study. Ester cleavage of NO-1886 from diethyl phosphonate to monoethyl phosphonate was the maj...

متن کامل

Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.

1,8-Cineole, the monoterpene cyclic ether known as eucalyptol, is one of the components in essential oils from Eucalyptus polybractea. We investigated the metabolism of 1,8-cineole by liver microsomes of rats and humans and by recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human P450 and NADPH-P450 reductase cDNAs had been introduced. 1,8-Cineole was found to be oxid...

متن کامل

Identification of human hepatic cytochrome P450 sources of N-alkylprotoporphyrin IX after interaction with porphyrinogenic xenobiotics, implications for detection of xenobiotic-induced porphyria in humans.

Porphyrinogenicity of certain xenobiotics depends upon mechanism-based inactivation of specific cytochrome P450 (P450) enzymes, followed by formation of N-alkylprotoporphyrin IX (N-alkylPP). Examination of the porphyrinogenicity of xenobiotics in animals and extrapolation of the results to humans is associated with ambiguity due, in part, to differences between P450 enzymes. The goal of this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oleo science

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2012